33a.

b. Fe³⁺: a and d sites

See the numerous examples in Tables 3-5 and throughout $t_{\rm L}$ survey.

c. Fe⁴⁺: d sites ⁹⁴

{Y₂,Ca₀,}[Fe₂](Fe₂³⁺,Fe₀⁴⁺)O₁₂⁴⁵

a = 12.378 Å

Magnetic measurements have not as yet been made on the material. The formula is written in accord with the Teherney paper.

32. Ru⁴⁺: probably a sites

${Y_{2.8}Ca_{0.2}}[Ru_{0.2}Fe_{1.8}](Fe_3)O_{12} $ ⁸²	a = 12.383 Å
Co^{2+} : c, a and d sites	
{MnGd ₂ }[CoMn](Ge ₃)O ₁₂ 43	a = 12.437 Å
${CoGd_2}[Co_2](Ge_3)O_{12}^{43}$	12.402
{CoY ₂ }[Co ₂](Ge ₃)O ₁₂ ⁴³	12.300
{Gd ₃ }[Co ₂](GaGe ₂)O ₁₂ 43	12.446
{Ca ₃ }ZrCoGe ₃ O ₁₂	$12.54^{43}, 12.528^{4}$
${Ca_3}[SnCo](Ge_3)O_{12}^{43}$	12.47
Y ₂ MgCo ₂ Ge ₃ O ₁₂ ⁹⁵	12.23
${CaY_2}[Co_2](Ge_3)O_{12}$ 95	12.35
${Ca_3}[Zr_{0.4}Sc_{1.6}](Co_{0.2}Ge_{2.8})O_{12}$	12,533
{Y ₃ }Fe _{5-2x} Co _x Si _x O ₁₂ 96,97	
{Y ₃ }Fe _{5-2x} Co _x Ge _x O ₁₂ 97	

See also 1, 16, Table 3, and discussion section on ionic-sit preference.

b. Co^{3+} a and d sites

$[Ca_3][Sc_{1,8}Co_{0,2}](Ge_3)O_{12}] ^{45}$	$a=12.501~{\rm \AA}$	
$Ca_{3}[Sc_{1,8}Zr_{0,2}](Co_{0,2}Ge_{2,8})O_{12}$ 45	12.518	

⁹⁴ D. I. TCHERNEV, Frequency-dependent anisotropy in Si- and Co-dop YIG and LuIG. J. Appl. Physics 37 (1966) 1318—1320. See also D. L. Wood a: J. P. REMEIKA, Optical transparency of rare-earth iron garnets. J. App Physics 37 (1966) 1232—1233.

⁹⁵ D. REINEN, Die Lichtabsorption des Co²⁺ und Ni²⁺ in oxidischen Ferkörpern mit Granatstruktur I. Z. anorg. allg. Chem. 327 (1964) 238-252.

⁹⁶ S. GELLER, H. J. WILLIAMS, R. C. SHERWOOD and G. P. ESPINOSA, Substitutions of divalent transition metal ions in yttrium iron garnet. J. App. Physics 33 (1962) 1195-1196.

⁹⁷ S. GELLER, H. J. WILLIAMS, G. P. ESFINOSA and R. C. SHERWOOD, Su stitution of divalent cobalt in yttrium iron garnet. Physic. Rev. 136 (190 A1650-A1656. After calcining these specimens for half an hour at 1215° C in oxygen, the first was fired at 1200° C for 24 hours in O₂ then quenched. The second was fired at 1220° C for 2 hours in O₂, then reground, recompacted and refired at 1225° C for 16 hours in O₂. The first specimen, i.e. with the Co³⁺ ions presumably in octahedral sites is canary yellow; the second is yellow-green.

a = 12.413 Å

12.401

12.50

34. Rh³⁺: a sites

See Table 4 for end-members.

35. Ni²: a sites

See also 1 and 16.

Note: Wherever a system is given in the above survey, lattice constants for various compositions are given in the references.

Ionic site preference

In our earlier work on the garnets, it *appeared* that the octahedral and tetrahedral sites preferred cations with spherical or pseudospherical ground-state electronic configurations. I should emphasize that we did not assert this rule; rather we indicated that experiments designed to synthesize garnets with ions not satisfying this rule were unsuccessful. However, even though we were aware of the paper (see Ref.⁸), we somehow missed the synthesis by DURIF⁷⁴ of the garnet {NaCa₂}[Cu₂](V₃)O₁₂ in 1958. This alone would be enough to negate this rule because the Cu²⁺ ion has one of the largest Jahn-Teller distortions. But subsequently⁵⁵ we managed to replace a small amount of Fe³⁺ by Mn³⁺ ion in YFe garnet. Because it was only about $2^{9'}$ replacement, we could not be *absolutely* sure of it, even though the powder photograph indicated a single-phase material and the moment per formula unit was significantly higher than that of pure *YFe* garnet as it should have been.

More recently, garnets in which Mn^{3+} ions fill the *a* sites have been -ynthesized ⁴⁷. The Mn^{3+} ion, of course, is the other 3d ion with a very ^{1,4rge} Jahn-Teller distortion. Further, a silicate garnet (goldmanite)

3*